By selecting the right foods or correct eating plan we are able to control our body weight or nutrient uptake.  If you follow the correct eating plan you are bound to improve your physical and mental health.

Femme Fit on FacebookFollow Femme Fit on LinkedInFollow Femme Fit on Google

Diet Articles | Get your body in shape

Low carb high fat

on . Posted in Diet

( 2 Votes ) 


When we cut down on our carbohydate intake, we need to supplement with more protein or more fat.  The million dollar question of course, which is the better and healthier choice?

Low carb high fat

By now we know that we should eat a diet which is lower in carbohydrates. But plenty of books published in the last decade have already been low-carb, high-protein, or low-carb, high-fat, or low-carb, high-'good'-fats, or all sorts of other combinations. Put simply, the real confusion lies in what we should switch the carbohydrates with: for example, whether it's protein or fats? And if fats, what kind of fats? This article, I hope, will answer the question and put any doubts out of your mind. In a nutshell, carbs should be substituted with fats, and those fats should be mainly from vegetable and animal sources. One's body use carbs for just one purpose: to supply energy. When we reduce carbs, the energy our bodies need has to come from somewhere else.

There are only two choices: Protein or fat.

The fuel which our body cells use for energy is really neither glucose nor fat, it is just a chemical called adenosine triphosphate (ATP). A typical human cell could have nearly one billion molecules of ATP at any one moment, and those may be used and re-supplied every three minutes.  This huge demand for ATP, and our evolutionary history, has caused our bodies' developing several different pathways for its manufacture.

Oxygen and mitochondria

Living organisms have two means to generate the energy they need to live. The very first is fermentation, a primitive method that doesn't require the presence of oxygen. This is one waythat anaerobic (meaning 'without oxygen') bacteria breakdown glucose to produce energy. Our body cells can use this method. The second - aerobic (meaning 'using oxygen') - method began after the Earth began to cool down and its atmosphere became abundant with oxygen. After this event, a new type of cell - a eukaryotic cell - evolved to use it. Today all organisms more complex than bacteria use this property and all animal life requires oxygen to function. When we breathe in, our lungs are used to extract the oxygen in air and pass it to the bloodstream for transport through the body. And in our bodies, it is our body cells' mitochondria - little power plants that produce the majority of the energy our bodies need - that use this oxygen. The process is called 'respiration'. This process takes the basic fuel source and oxidises it to produce ATP. The numbers of mitochondria in each cell varies, but as much as half of the total cell volume can be mitochondria. The important point to note is that mitochondria are primarily designed to use fats.

Which source of base materials are best?

The question now, in this era of dietary plenty, is: Which source is healthiest? There are three possible choices:
Glucose, which will come mainly from carbohydrates, although protein may also be utilised as a glucose source by the body if necessary; Fats, both from the diet and from stored body fats; Ketones which are derived from the metabolism of fats. Not all cells in our bodies use the same fuel. Cells that can employ fatty acids are those that contain many mitochondria: heart muscle cells, for example. These cells can make energy from fatty acids, glucose, and ketones, but given a choice, they much prefer to use fats. Cells that can't use fats must use glucose and/or ketones, and definately will shift to preferentially use ketones. These cells also contain mitochondria. But we also have some cells that contain few or no mitochondria. Types of cells with few mitochndria are white blood cells, testes and inner parts of the kidneys; and cells which contain no mitochondria are red blood cells, and the retina, lens and cornea in the eyes. These are entirely dependent on glucose and must still be sustained by glucose.
This means that when we limit carb intake, exactly the same energy sources must be used, but a greater amount of energy must be derived from fatty acids and the ketones derived from fatty acids, and less energy from glucose.

Sources of glucose

To understand how a low carb diet works, we need to look at how we eat. This process is truly one of eating, digestion, hunger and eating again. During our evolution, we also must have experienced long periods when food was in short supply and then we starved. This is a pattern our bodies are adapted to. And they have developed mechanisms to cope with a wide range of circumstances. Firstly, the human body must contain adequate levels of energy to sustain the essential body parts that rely on glucose. The brain and central nervous system may be a particular case as, although the brain represents only a small percentage of body weight, it uses between twenty and fifty percent of all the resting energy used by the body.[ii] Fortunately the brain can also use ketone bodies produced by fats. During fasting in humans, and when we are short of food, blood glucose levels are maintained by the breakdown of glycogen in liver and muscle and by the production of glucose primarily from the breakdown of muscle proteins in a process called gluconeogenesis, which literally means 'glucose new birth'.
But we don't want to use lean muscle mass in this way: it weakens us. We need to get the glucose our bodies need from what we eat. Some of that will come from carbs, the rest from dietary proteins. Our bodies need a constant supply of protein to sustain a healthy structure. This requires a fairly minimal amount of protein: about 1 to 1.5 grams per kilogram of lean body weight per day is all that is necessary to preserve muscle mass. Any protein over and above this amount can be used as a source of glucose.
Dietary proteins are converted to glucose at about fifty-eight percent efficiency, so approximately 100g of protein can produce 58g of glucose via gluconeogenesis. During prolonged fasting, glycerol released from the breakdown of triglycerides in body fat may account for nearly twenty percent of gluconeogenesis. Body fats are stored as triglycerides, molecules that contain three fatty acids combined with glycerol. The fatty acids are used directly as a fuel, with the glycerol stripped off. This is not wasted. As the glycerol is nearly ten percent of triglyceride by weight and two molecules of glycerol combine to form one molecule of glucose, this also supplies a source of glucose.

The case for getting energy from fat and ketones

When most people think of eating a low-carb diet, they tend to think of it as being a protein-based one. This is false. All traditional carnivorous diets, whether eaten by animals or humans, are more fat than protein with a ratio of about eighty percent of consumption of calories from fat and twenty percent of calories from protein. Similarly, the main fuel produced by a modern low-carb diet should also be fatty acids derived from dietary fat and body fat. We find in practice that free fatty acids are higher while in the bloodstream on a low-carb diet compared with a conventional diet.
But fats also produce an important secondary fuel: 'ketone bodies'. Ketones were first discovered in the urine of diabetic patients in the mid-19th century; for almost fifty years thereafter, they were thought to be abnormal and undesirable by-products of incomplete fat oxidation. In the early 20th century, however, they were recognised as normal circulating metabolites produced by liver and readily utilised by body tissues. Ketones are an important substitute for glucose. During prolonged periods of starvation, fatty acids are made from the breakdown of stored triglycerides in body fat. On a low-carb diet, the fatty acids are derived from dietary fat, or body fat if the diet does not supply enough. Free fatty acids are converted to ketones by the liver. They then provide energy to all cells with mitochondria. Within a cell, ketones are used to generate ATP. And where glucose needs the intervention of bacteria, ketones can be used directly. Reduction of carbohydrate intake stimulates the synthesis of ketones from body fat. This is one reason why reducing carbs is important. Another is that reducing carbohydrate and protein intake also leads to a lower insulin level in the blood. This, in turn, reduces the risks associated with insulin resistance and the Metabolic Syndrome.
Ketone formation and a shift to using more fatty acids also reduces the body's overall need for glucose. Even during high-energy demand from exercise, a low-carb diet has what are called 'glucoprotective' effects. What this all means is that ketosis as a result of a low-carb diet is capable of accommodating a wide range of metabolic demands to sustain body functions and health while not using, and thus sparing, protein from lean muscle tissue. Ketones are also the preferred energy source for highly active tissues such as heart and muscle. All this means that more glucose is available to the brain and other essential glucose-dependent tissues.

The case against getting energy from protein

We know, then, that dietary fats can produce all the energy the body needs, either directly as fatty acids or as ketone bodies. But, as there is still some debate about the health implications of using fats, perhaps you should play safe and eat more protein? There is one simple reason: Even though the body can use protein as an energy source in an emergency, it is not at all healthy to use this method in the long term. All carbs are made up of just three elements: carbon, hydrogen and. oxygen. All fats are also made of the same three elements. Proteins, however, also contain nitrogen as well as other elements. When proteins are used to provide energy, these must be got rid of in some way. Not only is this wasteful, it can put a strain on the body, particularly on the liver and kidneys.
Excess intake of nitrogen leads in a short space of time to hyperammonaemia, which is a accumulation of ammonia in the bloodstream. This is toxic to the brain. Many human cultures survive on a purely animal product diet, but only if it is high in fat.   A lean meat diet, on the other hand cannot be tolerated; it leads to nausea in as little as three days, symptoms of starvation and ketosis in a week to ten days, severe debilitation in twelve days and possibly death in just a few weeks. A high-fat diet, however, is entirely healthy for a lifetime. Perhaps one of the best documented studies is that of the Arctic explorer, Vilhjalmur Stefansson and a colleague.   They ate an animal meat diet for over a year to see whether such a diet could be healthy. Everything was fine until they were asked to eat only lean meat. Dr McClelland, the lead scientist, wrote:
'At our request he started eating lean meat only, although he previously had previously noted, in the North, that very lean meat sometimes produced digestive disturbances. Around the third day nausea and diarrhea developed. When fat meat was added to the diet, a full recovery was made in two days.'
This was a clinical study, but Stefansson had already lived for nearly twenty years on an all-meat diet with the Canadian Inuit. He and his team suffered no ill effects whatsoever.

Low-carb, high-fat diet and weight-loss

There's just one single other consideration: If you want to lose weight, the actual material you want to rid your body of is fat. But to do that you have to change your body from using glucose as a fuel to using fat ? including your own body fat. This is another reason not to use protein as a substitute for carbs, as protein is also converted to glucose.
If you think about it, Nature stores excess energy in our bodies as fat, and not as protein. It makes much more sense, therefore, to use what we are designed by Nature to use. And that is fat. So what levels of carbs, fats and proteins are required?
Clinical experience and studies into low-carb diets over the last century suggest that everybody has a threshold level of dietary carbohydrate intake where the changeover from glucose-burning to fat and ketone burning takes place. This varies between about sixty-five and 180 grams of carbs per day. If your carb intake is below this threshold, then your body fat will be broken down to generate ketones to supply your brain and other cells that would normally use glucose. In the early trials for the treatment of obesity, carb levels were very much reduced to supply only about ten percent of calories. This works out at around fifty or sixty grams of carb for a 2,000 calorie daily intake.
For diabetics, the level may need to be lower to counteract insulin resistance. Typical amounts of carb intake for a type-2 diabetic are around fifty grams per day; the level should be lower still at about thirty grams a day for a type-1 diabetic.
A Polish doctor, Jan Kwasniewski, who has used a low-carb diet to treat patients with a wide range of medical conditions for over thirty years, recommends a ratio of one part carb to two parts protein to between three and four parts fat, by weight.
What it means in practice is that on a 2,000 calorie per day diet, we should get:
Ten to fifteen percent of calories from carbs
Twenty to thirty percent of calories from protein and
Sixty to seventy percent of calories from fats.
Or put another way, as it is difficult to work out percentages in this way, fifty to seventy-five grams of carb and the rest from meat, fish, eggs, cheese, and their natural fats.

Potential for other diseases

The traditional Inuit (Eskimo) diet is a no-carb diet. It's notable that the Inuit diet described by Drs Vilhjalmur Stefansson and Hugh Sinclair in the 1950s is very similar in regard to percentages of fat/protein/carb intake to the experimental low-carb diets used in recent obesity studies. The Inuit diet was comprised of seal, whale, salmon, and a very limited amount of berries and the partially digested contents of animals' stomachs. On this diet, blood cholesterol levels were very high as were free fatty acids, but ... and this in much more important triglycerides were low.. It is actually interesting to note that the Inuit were of great interest to research scientists because they had practically none of the diseases we suffer, including obesity, coronary heart disease and diabetes mellitus.